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A five-state statistical-mechanical model is employed in the
present study of surface segregation in 201-atom bimetallic clusters
having truncated cubo-octahedral shape. The model uses ideal
entropy of mixing and assumes zero heat of mixing. Surface segre-
gation is studied via direct minimization of the free energy without
performing Monte Carlo simulations. The effects of size mismatch
between atoms of different type are included via a new empirical
formula, based upon dimensional scaling arguments, leading to
an increase in the surface fraction of larger atoms. We used the
corrected effective medium potentials to generate the site energies
(interaction energy per atom) used in the model. A complete list
of site energies for nine fcc metals is presented for 201-, 586-,
1289-atom clusters and semi-infinite surfaces. In particular, the
corner and edge site energies are found to be independent of cluster
size. The model reproduced qualitatively the surface and
edge~corner segregation results for 11 50%—50% bimetallic clusters
generated by atomistic simulations at 600 K that we reported
earlier. The remaining difference in results between the model and
the simulations is attributed to the effect of nonzero heats of mixing.
For systems with very large (>12%) lattice-size mismatch such as
Ni—Ag and Cu-Ag, the distortion from the perfect lattice structure
is significant according to the simulations; thus, simple modeling
involving a few well-defined states is problematic. © 1994 Academic

Press, Inc.

INTRODUCTION

Supported bimetallic clusters are used as catalysts
for the conversion of automobile exhausts into nontoxic
gases and the refinement of crude oil in the petroleum
industry (1, 2). These catalysts operate in the form of
nanometer scale particles whose activities are influenced
drastically by the degree and type of surface segregation
(3, 4). Experimental data on such clusters are extremely
difficult to obtain, while theoretical predictions of the
structure and energies of these clusters depend upon an
accurate and computationally efficient description of
metal-metal bonding. The study of bimetallic clusters is
both important technologically and challenging scientifi-
cally.

There have been a number of theoretical calculations
(5-8) and simulations (9-14) of small bimetallic clusters
reported. These studies range from free-energy minimiza-
tion (5-7), tight-binding electronic structure theory (8),
and rigid-lattice Monte Carlo (MC) simulations (9-11) to
continuous molecular dynamics (MD) and Monte Carlo
simulations (11-14).

In Ref. (14), we presented the results of atomistic MD
and MC simulations on surface segregation in bimetallic
clusters of Rh, Ni, Pd, Cu, and Ag. The interaction energ-
ies were generated from a simplified version of the non-
self-consistent electron-density-functional corrected ef-
fective medium (CEM) theory (15), namely, the molecular
dynamics/Monte Carlo-corrected effective medium
(MD/MC-CEM) theory (15d). Using MC exchange of the
positions of unlike atoms in conjunction with continuous
MD evolution of all atoms, we reported systematic, quan-
titative studies of the composition, cluster-size, and tem-
perature dependencies of the surface and edge—corner
segregation profiles.

While atomistic simulations provide the most reliable,
detailed, and accurate treatments, they suffer from two
inherent weaknesses. Computationally, they are very de-
manding and the demands increase rapidly at low temper-
atures. Conceptually, it is also difficult to relate simulated
results to a few parameters which would enable one to
understand the fundamental principals underlying segre-
gation behavior. As such, it is important to seek alterna-
tive theoretical tools which, when combined with atomis-
tic simulations, can provide faster results and more insight
on surface segregation phenomena.

In this paper, we use a much simpler free-energy mini-
mization approach to study surface segregation in bimetal-
lic clusters. The inputs into this model are the interaction
energies of atoms in different binding sites on a cluster
and the formula for the ideal mixing entropy. The energy
levels are defined from atomistic cluster calculations using
either the MD/MC-CEM or the CEM theories. The results
of such simple modeling are compared to the direct atom-
istic simulations reported in Refs. (11, 13, 14).
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THEORY

The thermodynamic free-energy formulas were devel-
oped over 2 decades ago for calculating site segregation
in binary clusters having multiple binding sites (16). Much
later, Strohl and King presented a general thermodynamic
model for surface segregation on multicomponent,
multilayer crystal surfaces (17). A variation of the
multistate model for clusters of finite size is presented
here with a detailed consideration of the energies of each
state from a microscopic point of view.

We consider a cluster of truncated cubo-octahedral
shape since these are stable shapes and since this allows
a concrete discussion of the multistate model. Defining a

Cluster structural quantities
Compositional quantities

N, = number of sites of ith type
NA = number of A-atoms in the ith site
NAi=3 N# = total number of A-atoms
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binding site by counting the number of nearest neighbors
to an atom in this location, we find there are five different
types of binding sites in the cubo-octahedral cluster: (1)
6-coordinated at the corners; (2) 7-coordinated at the
edges; (3) 8-coordinated on the (100)-planar face; (4) 9-
coordinated on the (111)-planar face; and (5) 12-coordi-
nated in the interior bulk region. Thus, one may model a
bimetallic cluster of this shape using a five-state model
for each component.

More generally, for a two-component system of A- and
B-atoms with **m’’ different types of binding sites for each
component, the constants, variables, and constraints are
the following:

(m constants)
(m variables)
(1 constant)

N2 = number of B-atoms in the ith site  (m variables)

N8 =3 NZ = total number of B-atoms (1 constant)

N, = N4+ N§ (m constraints)
Site energies e = energy of an A-atom in the ith site (m constants)

Note that the constraint, N, = N + N5 reflects the fact
that each ith site must be occupied by one and only
one atom.

The free energy is

F=E-TS=E-kTIhQ, [1]

where the energy E for an m-state binary system with
zero heat of mixing is

m

E =Y (Nfe! + NPep). [2]
=1

Using explicit constants and constraints to eliminate the
explicit dependence upon {N2} and N4, we rewrite Eq.
[2] as

m=1

SNt e
"121 NA)] - (3]

m-—1
E="S (Nfeh + (N, - Neb] + (NA

i=1
o[ v
Upon collecting terms containing N4, this yields
m—1
E = Z [(8;4 - Sm) - (8 gz)]N,A [4]
i=1

+ {(sf}, - eB)NA + Z S,BN,-}.
=1

e? = energy of a B-atom in the ith site

(m constants).

The last two terms in Eq. [4], which are in curved brack-
ets, do not depend upon the variation in occupancy of
any site and are thus constant for a given cluster size and
composition. One has then an energy function of m —
1 variables

E=E(NA,N?" : Nm 1 (5]

For the configurational contribution to the entropy, the
phase space counting yields the multiplicity factor as

m

‘Q’ ]—[ NA'(N NA)' [6]
m=1 N,'
- [n. NAT(N; - N;‘)!] 7l
N I
X (N Em INA)|(N _ NA + Em ]NA)'
= QN4 N4,. .. NA_). (8]
Therefore,
F=E—kTInQ = F(N%,N4,. . .,N4_), 9]

and the model has m — 1 independent variables {N4,
i=1,...,m — 1} for each temperature, cluster size,
and composmon
The ‘‘effective”
m — 1 independent

energy levels associated with these
variables are {(ef — &%) -
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(e? — £8)} from Eq. [4]. Letting the mth state correspond
to a bulk site, these ‘‘effective’” energy levels are just the
difference in energy between an A-type atom in the ith
and bulk sites and a B-type atom in the ith and bulk sites.
An equivalent expression, (e + &5) — (e4 + £5), can
be interpreted as the energy difference between the final
and initial configurations of the atoms in the cluster: an
A-atom in the bulk site and a B-atom in the ith site as the
initial configuration, and an A-atom in the ith site and a
B-atom in the bulk site as the final configuration. Thus
the ‘‘effective’” energy represents the energy required to
swap an A-atom in the bulk with a B-atom in the ith site.
Clearly, if the “*effective’” energy is positive, it requires
more energy to populate the ith site with A-atoms and
these sites will be depleted of A-atoms.

The weakness of Eq. [4] involves the lack of any explicit
parameters related to the lattice constant of the metal or
the size of the atom. Larger atoms segregate to the surface
even if the energetics for two metals are the same in
order to relieve the large strain energy associated with
the compression of larger atoms in the bulk. Alternatively,
if one does not compress the bulk, the smaller atoms will
not cover the surface entirely and thus second layer atoms
will be exposed, thereby leading to an increase in energy.
Either way of thinking about the segregation leads to the
same conclusion: inclusion of the effect of lattice-size
mismatch requires modification of the energy expression
in Eq. [4].

The extension we have developed is based purely on
dimensional arguments and thus should be considered
empirical. We note that for two-dimensional planar sur-
faces the energy per unit area controls surface segregation
in the thermodynamic limit (18). As such, we assume that
an inverse scaling with dimension is appropriate, leading
to the following empirical modification of Eq. [4]:

m—1 8/_1 — EA SB — 88
. — dY 1 n . ! " ‘.4
Egy Z (ap) [ prIT @ }N,. [10]

The subscript “‘size” simply indicates that size depen-
dence is included in this formula. The scaling exponents,
{d}, are 0, 1, and 2 for corner, edge, and surface planar
sites, respectively. The scaling length is simply the lattice
constant, a,, which provides a measure of the atomic
size. The average lattice constant is defined empirically
as the fractional arithmetic average:

N4a} + N8af

A Y

[11]

Note that the coefficient in front of N¢ in Eq. [10], the
new ‘‘effective’” energy level for A-atoms in the ith site,
now changes with the composition.
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This modification distinguishes the site energies in a
mixed cluster from those in a pure cluster or surface
system. It can only be expected to be accurate when the
difference in lattice size is small since the site energies
will vary slowly in this case. If the size difference is large,
an atom will be in a local environment that is either very
compressed or relaxed and thus the distance to its neigh-
bors will be very different from that in the homogeneous
system for which the site energies are defined. In this case,
the empirical modification in Eq. [10] will not be accurate.

Equation [10] converts to Eq. (4] when af = af (i.e.,
no mismatch), since in this case («,) from Eq. [11] equals
a{ and af. Note that the choice of d;, = 2 in Eq. [10] for
a two-dimensional planar surface site is rigorous (18) but
this is not generally true for the sites on finite facets of a
cluster due to the absence of two-dimensional periodicity.
Furthermore, the choice of d,’s for edge and corner sites is
a simple guess based upon the local geometry surrounding
such atoms. The way to test the appropriateness of this
model is by comparison to the results of accurate atomis-
tic simulations.

One can now study surface and site segregation as a
function of the temperature, the overall composition, as
well as the cluster size by minimizing the free energy
in Eq. [9]. As compared to atomistic simulations, the
computer time required for free-energy minimization is
significantly less and does not increase with decreasing
temperature. The latter is a great advantage at low temper-
ature where convergence of atomistic simulations of ei-
ther Monte Carlo or molecular dynamics type can be very
difficult. Moreover, for systems with four states or less
(m = 4), or equivalently, with three independent variable
or less, analytical solutions can be obtained for surface
and site segregation upon minimization of the free energy.

To perform these free energy minimizations, one re-
quires the “*effective’” energy levels for either Eq. [4] or
Eq. [10], with size effect excluded and included, respec-
tively. These are generated from CEM method (15), a
nonself-consistent electron density functional approach
presented briefly here. For N atoms {A;,, i = 1,. . .,
N}, the CEM theory uses the following equations to calcu-
late the interaction energy:

N

AE{AD = Z AEpx m(A;zn) [12]
+ - 2 2 Vi, j) + AGHAY,
l 1 j#i
A;
2 | MATZR) ave - Rydr. 113]
/#l
Here n(A;; r — R} is the atomic electron density for atom

A, obtained from Hartree-Fock calculations (19), while
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Z,; and R, are the atomic number and nuclear position, re-
spectively.

In Eq. [12], the V (i, j) term is the Coulomb interaction
energy between atoms A, and A; and the AG term is the
kinetic-exchange-correlation correction energy, both de-
pendent only upon the already specified atomic electron
densities. The only adjustable part in Eq. [12] is
AEgy m(A;; n), the embedding energy of atom A; into a
jellium of electron density n; defined in Eq. [13]. This
embedding function was constructed by forcing the CEM
result to duplicate (1) the linear muffin tin orbital (LMTO)
calcualted bulk cohesive energy curve (15f) and (2) the
dimer binding curve in the Morse form generated from
the experimental dimer bond length, binding energy, and
vibrational frequency (15g). This procedure is developed
and implemented in Ref. (15g), to which the interested
reader is directed for details.

The calculation of the last term in Eq. [12], AG, is
thousands of times slower than the calculation of the first
two terms. A simplified version of CEM has been devel-
oped to overcome this computational expense and to
allow applications to large systems (15d). The central ap-
proximation is the incorporation of the computationally
intensive AG term into the AEpy; y term in Eq. [12],
yielding

N N N
AE{A}) = Z AFexim(A;n) + % Z] Z V., ). [14]
iz by Ry

Here AFgy u(A;; ny) is the “effective’” embedding func-
tion which was also fitted to the bulk and dimer properties
mentioned earlier (15f-g). Equation [14] defines the MD/
MC-CEM potential used in this work, except that for Ir
and Rh dimer information was not incorporated due to
the lack of data (15g). We should note that the potentials
used in Ref. (14) are identical to the ones used in the
present work, although we used the notation LMTO in
Ref. (14) and did not mention the incorporation of di-
mer information.

RESULTS AND DISCUSSIONS

We first obtained the site energies {7} and {¢?} from
atomistic calculations on the pure system. Since the ther-
modynamic model is based upon the assumption of zero
heat of mixing, this is consistent. For each pure metal,
201-, 586-, and 1289-atom cubo-octahedral clusters trun-
cated from the bulk fcc structure were initialized using the
bulk nearest neighbor distance at 0 K. For each cluster, a
minimization of the MD/MC-CEM interaction energy was
performed via the conjugate-gradient method until the
maximum force on any atom was less than 103 eV/bohr.
For each 201-atom cluster, this was followed by an addi-
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tional minimization of the CEM interaction energy until
the maximum force on any atom was less than 10-2 eV/
bohr. The larger upper limit for the force, 102 eV/bohr,
was necessary due to the lowered numerical accuracy of
the computationally intensive CEM calculations. Indeed,
the minimization of a 201-atom cluster had to be done on
a supercomputer when using the CEM generated interac-
tion energy; at a rate of 100 Mflops, the CPU time required
for one CEM calculation at each nuclear geometry is (1
— 100)N? sec, where N is the number of atoms. These
energy-minimized clusters maintained the truncated
cubo-octahedral geometry. However, each shell of atoms
equidistant from the center either contracted or expanded,
relative to the initial configuration.

In Table 1, we list the shell-by-shell MD/MC-CEM en-
ergies for the 201-atom Pd cluster as an example. Note
that the energy of 12-coordinated atoms in different shells
can vary by =0.2 eV. This is due to both the effect of
differing nonnearest-neighbor interactions and the differ-
ent shell-by-shell contractions or expansions. For use in
the free energy minimization model, we define the bulk
energy as the arithmetically weighted average energy of
all the atoms with coordination 12. These are presented
in Tables 2 and 3, e.g., —3.809 eV for Pd (size 201) in
Table 2. The variation of even 0.1-0.2 eV in the bulk
energy is rather unimportant since it is only the relative
difference, {(e? — ef,0) — (8 — €80}, that enters. Simi-
larly, the smaller variations in the (111)-surface and edge
site energies in Tables 2 and 3 were also averaged over
to provide site energies for atoms with coordinations 9
and 7, respectively.

We should also mention that shells 9¢ and 96 have the
same distance from the center in a perfect 201-atom cubo-
octahedral cluster. They have different energies in Table

TABLE 1

Shell-by-Shell Energies in Units of eV for Pd in a 201-Atom
Monatomic Cluster, Calculated Using the MD/MC-CEM

Potential
Number
Shell of atoms Energy Coordination Site
0 1 -3.924 12 Bulk
1 12 -3.904 12 Bulk
2 6 -3.871 12 Bulk
3 24 -3.842 12 Bulk
4 12 -3.810 12 Bulk
S 24 —3.709 12 Bulk
6 8 —3.155 9 (111)
7 48 -3.125 9 (1
8 6 -3.052 8 (100)
9a 24 —2.740 7 Edge
9 12 —2.662 7 Edge
10 24 —2.445 6 Corner
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TABLE 2

MD/MC-CEM Site Energies in Units of eV for Relaxed Clusters and Surfaces
(C = Coordination Number)

Metal Size C = 12 bulk C =9 (11 C = 8 (100) C = 7 edge C = 6 corner

Al 201 -3.319 —-2.964 -2.928 -2.719 —2.530
586 51 81 926 5 1
1289 63 87 924 2 0

% 89 88 894 — —
Ni 201 —4.348 —3.608 —3.522 -3.158 —2.875
586 386 25 31 62 4
1289 402 31 33 62 2

% 440 41 19 — —
Cu 201 —3.425 -2.879 -2.814 —2.531 —-2.303
586 53 892 815 1 2
1289 64 896 815 0 1

x 90 902 795 —_ —
Rh 201 -5.62] —4.705 —4.611 —4.151 —3.788
586 675 30 28 7 6
1289 698 39 33 7 3

x 750 57 19 —_ —
Pd 201 —~3.809 -3.129 -3.052 -2.714 —2.445
586 43 45 61 7 3
1289 57 50 64 7 1

x 90 61 55 — —_
Ag 201 -2.911 —2.487 —2.431 ~2.220 —2.041
586 28 496 6 39
1289 34 500 7 37

% 50 505 1 — _—
Ir 201 —6.785 -5.762 —5.667 -5.126 —4.702
586 850 791 74 30 2
1289 877 801 74 29 1

x 939 812 34 — —
Pt 201 —5.750 -4.942 —4.859 ~4.477 —4.184
586 787 60 67 82 2
1289 802 66 70 83 0

x 838 78 62 — —_
Au 201 -3.755 -3.163 -3.092 —-2.810 —2.587
586 780 75 30 6
1289 750 79 90 S

x 811 87 78 — —

1 because edge atoms in shell 94 bridge the (100) and (111)
facets, while edge atoms in shell 95 bridge two adjacent
(111) facets. The (100)-surface site energy in Table I has
only a single value, which is the case only for 201- and
586-atom clusters. In a 1289-atom cluster, there are three
different types of (100)-surface sites which have slightly
different energies. The only type of site that does not
require any averaging for the site energy for all cluster
sizes is the corner site. There are always 24 identical
corner sites in a truncated cubo-octahedral cluster of any
size. The numbers of other types of sites in 586- and 1289-
atom clusters are: 72 and 108 for edge, 24 and 54 for (100),
152 and 296 for (111), and 314 and 807 for bulk.

In Tables 2 and 3, we provide a complete list of the
MD/MC-CEM and CEM site energies for Al, Ni, Cu,
Rh, Pd, Ag, Ir, Pt, and Au, generated using the above

procedure for 201-, 586-, and 1289-atom clusters. These
two tables provide a vast increase in the amount of infor-
mation available about bonding in these systems. For the
site energies of 586- and 1289-atom clusters and infinite
(=) systems, only the digits different from the 201-atom
values of the same metal and same site are shown while
the initial digits identical to the 201-atom values are left
blank for clarity.

First, we should point out an unusual behavior in Table
2: the low coordination site energies for Al are more nega-
tive than those for Cu, even though Al is bound weaker
than Cu in the bulk. This is an artifact of the flatness of
AFgx m(Al; 1) in the jellium density region between the
dimer and the bulk. The first derivative of the MD/MC-
CEM embedding function for Al exhibits a minimum in
this intermediate electron density region, thus overly sta-
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TABLE 3
CEM Site Energies in Units of eV for Relaxed Clusters and Surfaces (C = Coordination Number)

Metal Size C = 12 bulk C =9(11 C = 8 (100} C = 7 edge C = 6 corner
Al 201 -3.324 —2.866 —2.834 —2.555 -2.336
© 88 89 06 — —
Ni 201 —4.307 -3.771 -3.747 —3.404 -3.132
x 439 819 3 — _—
Cu 201 -3.3% -2.978 —2.967 —2.693 -2.475
x 489 —-3.004 43 —_ —
Rh 201 —5.593 —4.851 —-4.811 —4.368 —4.017
x 746 910 4 — —_
Pd 201 —3.788 -3.238 -3.201 -2.877 -2.610
x 887 75 12 — —
Ag 201 —2.891 —2.542 -2.534 -2.314 -2.129
x 946 67 37 —_ —
Ir 201 -6.769 -5.874 -5.797 —5.260 —4.831
x 935 919 51 — —_—
Pt 201 —5.744 -5.048 —4.986 -4.613 —4.321
x 834 75 — —
Au 201 ~3.744 —3.274 -3.235 —2.965 -2.750
ES 804 9 22 — —

bilizing the low coordination sites in a cluster. This is due
to the fact that the embedding function based on dimer
data and the one based on LMTO bulk calculations differ
significantly, making it difficult to join them smoothly.

The values of bulk site energies for infinite (<) size
clusters are taken as the bulk cohesive energies of metals
which are reproduced exactly by both MD/MC-CEM and
CEM models (15f—g), while those for the (111) and (100)
site energies were taken as the potential energy of the
corresponding first-layer atom obtained by atomistic cal-
culations of relaxed two-dimensional surfaces. In such
calculations, the top seven layers were allowed to adjust
their vertical positions, while the bottom three layers for
(111) and the bottom four layers for (100) were held rigid
at the bulk separations. We did not include energies of
subsurface (second- and third-layer, etc.) atoms to obtain
an averaged value for the bulk energy in the surface calcu-
lations for two reasons. First, subsurface atoms on (111)
and (100) surfaces have different energies, precluding a
unique choice. Second, a real surface has infinitely many
layers which would produce an average bulk site energy
equal to the bulk cohesive energy unless some arbitrary
cutoff was invoked. Since the bulk site energy is not
critical, we decided to consistently include only atoms
with coordination 8 for (100) and 9 for (111), i.e., the
top layer atoms. The ambiguity in coordination for open
surfaces makes the edge and corner site energies for an
infinite (=) size system ill-defined and thus these were
not calculated.

Perhaps the most striking feature of Table 2 is the very
small variation in corner energy with cluster size: for an
increase from 201 to 1289 atoms, the largest change is

only 5 meV for Rh. Correspondingly, the largest change
in the edge energy is only 7 meV for Al. This absence
of cluster-size dependence for the corner and edge site
energies in nanometer clusters implies that the local bond-
ing arrangement is the dominant factor determining these
interactions. By contrast, the bulk and (111) site energies
decrease with increasing system size due to the increasing
number of non-nearest neighbors which contribute to the
attractive interactions. The (100) site energy, however,
increases by 34 meV for Al and 33 meV for Ir as the size
increases from 201 to «cin Table 2. We have not discovered
any satisfactory explanation for this behavior, which devi-
ates from that of most other metals.

Although Table 2 contains only MD/MC-CEM results,
itis quite plausible that the lack of cluster-size dependence
for corner and edge site energies is universal. As such,
we expect that the CEM corner and edge site energies
generated from 201-atom clusters in Table 3 could also
be used for much larger clusters, say 1289 atoms, for
which direct energy minimizations are too demanding
computationally.

On the other hand, to judge from Table 2, using the
bulk and surface site energies of 201-atom clusters directly
for 1289-atom clusters would not be so reliable. The infi-
nite-size limiting values for the CEM bulk cohesive energy
and surface site energies are already available in Table
3. The variation for each system is very similar in the
MD/MC-CEM and CEM results from size 201 to «. For
simplicity, one may assume that between CEM and MD/
MC-CEM, the variation in site energies from one cluster
size to another only differs by a constant which can be
determined by the 201 and <« values in Tables 2 and 3.
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Such a simple interpolation procedure will provide CEM
bulk and surface site energies for each cluster size.

With the site energies available, we now compare re-
sults of the direct free-energy minimization model with
those from atomistic simulations. We first show the sur-
face and edge-corner segregation results for ten 50%-50%
bimetallic clusters in Table 4 which is in the same format
as Table 2 of Ref. (14). In accord with the convention used
in Ref. (14), the surface percentages inciude contributions
from ail non-bulk sites. The results from the model with-
out size effect and the model with size effect were gener-
ated vsing Eq. [4] and Eq. [10], respectively, for the total
energy of a bimetallic cluster. For the latter, the lattice
constants in A that were used for the metals are 4.09 (Ag),
4.08 (Au), 4.05 (AD), 3.92 (Pt), 3.89 (Pd), 3.84 (Ir), 3.80
{Rh), 3.61 (Cu), and 3.52 (Ni). The size mismatch is also
given in Table 4 for the convenience of the reader. In the
analysis of this table, we shall disregard any differences
less than 2% for surface and 4% for edge—corner percent-
ages since the atomistic simulations are unlikely to be
more accurate than this.

The results in Table 4 fall naturally into four classes
based upon the size mismatch and the spacing of the
“effective’” energy levels, or the difference in surface
energies. The first class, consisting of the Rh~Ag, Rh~Cu,
and Pd-Ag systems, exhibits medium mismatch of 5-10%
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FIG. 1. MD/MC-CEM effective energy diagrams for 201-atom

Rh-Ag clusters. The energy levels without subscript **size’’ were calcu-
lated vsing Eq. [4] with A = Rh and B = Ag for any composition, while
the (111), (100}, and edge levels with subscript *'size’" were calculated
using Eq. {10} with N® = N2¢in Eq. (111, i.¢., for a S09%-50% composi-
tion. The bulk and corner energy levels are the same in both models.

and large spacing of ‘effective’ energies. Shown in Fig.
[ are the “‘effective” energy levels for Rh~Ag, combined
from the MD/MC-CEM site energies for size 201 in Table
2. The spacing of over 0.5 eV between bulk and surface
planes is very large compared to the temperature of 600

TABLE 4

The Percentage of Surface (Upper Right) and Edge-Corner (Lower Left) Sites Occupied by the Element with
Higher Surface Energy in 201-Atom Bimetallic Clusters at 600 K with 50%-50% Total Concentration

Rh Ni Pd Cu Ag Method

Rh —_ 24 8 17 i7 Model w/o size, Eq. {4]
— 32 17 17 17 Model with size, Eq. [10}
- 40 8 18 18 Atomistic, Ref. (14)
(0.0) (7.7) (2.3) (5.1 (7.4) (Size mismatch)

Ni 3 — 35 20 17 Model w/o size, Eq. (4]
5 — 23 I8 17 Model with size Eq. {10}
15 — 31 19 5 Atomistic, Ref. (14)
(7.7) (0.0) (10.0) (2.5 (15.0) (Size mismatch)

Pd 2 27 —_ 24 18 Model w/o size, Eq. [4}
2 32 — 34 17 Model with size, Eq. {10]
0 27 — 39 18 Atomistic, Ref. (14)
(2.3) (10.0) (0.0 (7.5) (5.0 {Size mismatch)

Cu 0 3 10 — 25 Model w/o size, Eq. [4]
0 5 12 — 19 Model with size, Eq. {10}
0 3 22 — 13 Atomistic, Ref. (14)
5.H 2.5 (1.5 (0.7 (12.5 (Size mismatch)

Ag 0 0 2 8 — Model w/o size, Eq. [4]
0 3 2 13 — Model with size, Eq. [10]
0 4] 0 2 —_— Atomistic, Ref. (14)
(7.4) (15.0) (5.0) (12.5) (0.0) (Size mismatch)

Note. The metals listed in descending order of surface energy are Rh, Ni, Pd, Cu, Ag. The first, second, and third rows
for each bimetallic combination are results from the model without size effect in Eq. {4], model with size effect included
in Eq. {10]. and atomistic simulations (14) using the MD/MC-CEM interactions, respectively. The last row is the percentage
lattice mismatch defined as 200 x |a, (large) — «a, (small)|/{a, (large) + a, (small}}.
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K (kT =~ 0.05 e V). The two models agree with the atomistic
simulation for trivial reasons: the cluster retains the cubo-
octahedral shape (e.g., Rh~Ag in Fig. 2a) and the surface
segregation is limited for a 50%-50% mixture in this geom-
etry to 17% (14).

The second class, consisting of the Ni-Ag and Cu~Ag
systems, is much more interesting with large mismatch
of >10% and variable spacing of ‘‘effective’” energies
(large for Ni-Ag and small for Cu-Ag). The models agree
with each other for Ni-Ag but severely underestimate the
surface fraction of Ag. The picture in Fig. 2b shows that
the atomistic simulation leads to a severe distortion of
the Ni-Ag cluster geometry, allowing for a much larger
fraction of Ag. Hence, using the simple multiple-state
models to describe this system is inaccurate, since there
are no well-defined lattice sites in the system. Atomistic
simulations are necessary for such systems with large
lattice-size mismatch. It is not surprising that the models
do not reproduce the simulated results for surface and
edge-corner segregation for Ni-Ag and Cu~-Agin Table 4.

(a)

(c)

YANG AND DEPRISTO

The third class, consisting of the Rh~Pd and Ni-Cu
systems, exhibits small mismatch of <5% and medium
spacing of “‘effective’ energies. The “‘effective’” energy
levels for Rh—Pd and Ni-Cu are very similar to Fig. 1 for
Rh-Ag, but scaled by approximately a factor of 0.5 for
the former and 0.4 for the latter. The models agree with
each other because of the small mismatch and also agree
with the atomistic simulations. The picture of Ni-Cu in
Fig. 2¢ shows that the cubo-octahedral shape is retained.

The fourth class, consisting of the Rh—Ni, Ni-Pd, and
Pd-Cu systems, exhibits medium mismatch of 5-10% and
medium spacing of “‘effective’” energies as shown in Fig.
3. The picture of Ni-Pd in Fig. 2d shows that the cubo-
octahedral shape is still retained even with a mismatch
of 10%. The models disagree with each other because
of the medium mismatch. The model without size effect
predicts the degree of surface segregation in Ni—Pd (35%)
to be much less than that in Rh—=Ni (219%) and that in
Pd-Cu (24%). By contrast, the model with size effect
predicts the surface segregation in Ni-Pd (23%) to be

(b)

(d)

FIG. 2. Final configurations for 201-atom bimetallic clusters of (a) Rhy~Agys, (b) Nips=Agys, (¢} Nijp«~Cuys, and (d) Nips~Pd, 5, obtained
from atomistic simulations at 600 K using the MD/MC-CEM potentials (14). The metal with higher surface energy is listed first, shown as brighter

spheres, and depleted from the surface.
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FIG. 3. MD/MC-CEM effective energy diagrams for 201-atom clusters of (a) Rh—Ni, (b) Ni-Pd, and (¢) Pd~Cu. both without size effect and

with size effect for a 509%-50% composition.

much greater than that in Rh—Ni (32%) and that in Pd—Cu
(34%). This qualitative conclusion from the model with
size effect is supported by the atomistic simulations. The
simulations indicate that the surface segregation in Ni-Pd
(31%) is indeed much stronger (not weaker) than that in
Rh-Ni (40%) and that in Pd—Cu (39%).

With the above general trends in mind, we now proceed
to the detailed comparison of the two models for the three
more interesting systems in the fourth class. Presented in
Fig. 3 are the effective energy levels for Rh—-Ni (Fig. 3a),
Ni-Pd (Fig. 3b), and Pd-Cu (Fig. 3c). Notice that Rh,
Ni, and Pd will be depleted at the surface and edge—corner
sites in the three systems, respectively. The (111}, (100),
and edge levels in Fig. 3b are lower than those in Figs.
3a and 3¢ without the size effect, but the opposite is true
with the size effect. It can be seen from Fig. 3b that the
size effect (i.e., Pd is larger than Ni) assists the energetic
driving force for surface segregation in Ni-Pd (i.e., Pd
also has a lower surface energy than Ni). In the Rh-Ni
(Fig. 3a) and Pd-Cu (Fig. 3c) systems, the size effect

opposes the energetic driving force since the larger atom
has a higher surface energy.

Corresponding to Fig. 3, the surface segregation curves
for 600 K obtained from the models are shown in Fig. 4,
along with the results from atomistic simulations of 201-
atom RhsNiys, NigsPdys, and Pd, Cu, < clusters using
the MD/MC-CEM potential (14). Figures 4a (Rh-Ni) and
4c (Pd-Cu) suggest that the present empirical description
underestimates the size effect, while Fig. 4b (Ni-Pd) sug-
gests an overestimation. Two possible methods to im-
prove the agreement between the model and the simula-
tions are to vary the exponents, d,’s, in Eq. [10], and to
try other forms for {ay) in Eq. [11]. Such changes will
make the size effect either more pronounced or less pro-
nounced in all bimetallic clusters thereby worsening the
agreement in at least some systems. As such, it appears
that the present choice for d;’s and {a,) may represent a
very good compromise when all systems are considered.

Another point is that the simulated results are consis-
tently closer to the nonsegregation line, the diagonal, than
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models while the solid circles are from atomistic simulations using the MD/MC-CEM potentials (14). The two paraliel short-dashed lines
encase the total allowable region of segregation, and the third short-dashed line (the diagonal) separates the enrichment (above) and depletion

(below) regions.

the model with size effect. We believe that the major
reason for this systematic difference is the neglect of the
heat of mixing in the models. The MD/MC-CEM heats
of mixing are —27, —12, and — 18 meV/atom for bulk
ordered 50%-50% alloys of Rh—Ni, Ni-Pd, and Pd-Cu,
respectively (20). These values also change by 10-20
meV/atom for different compositions (20). Such energies
are quite significant on the scale of Figs. 3a-3c; and at-
tractions between different types of atoms will decrease
segregation. A few other possible reasons for the system-
atic difference are the neglect of the vibrational and anhar-
monic contributions to the entropy and the fact that there
are more than five energy levels in real systems.

In Table 4, the simulations also predict weaker
edge—corner segregation than the models for Rh—Ni and
Pd-Cu systems, as expected from the heat of mixing argu-
ments. For Ni-Pd, however, the simulation predicts
stronger edge—corner segreation (27%) than the model
with size effect included (32%). This is due to the corner

site energy level for Ni being lower than three other levels
in the model with size effect (see Fig. 3b). Figure 3b
suggests that the enrichment of Ni at the corners in Ni-Pd
causes the decrease of the overall edge—corner segrega-
tion. Detailed results of the model with size effect show
that the corner fraction of Ni in Ni-Pd is 58%, indeed
larger than the total fraction of Ni which is 50%.

Now let us turn to the comparison of CEM (not MD/
MC-CEM) results generated from the models and simula-
tions. Shown in Fig. 5 are the effective energy levels for
Rh-Pt generated using the CEM site energies in Table 3.
Using both models, we obtained the surface fractions of
Rh shown in Fig. 6. The model using Eq. (10], with size
effect, produces edge-corner fractions for Rh as shown
in Fig. 7. Since the lattice size mismatch is only 3% for
Rh-Pt, the inclusion of size effect is not as important as
in the previous focus examples, but is still noticeable in
Fig. 6 due to the small spacing in effective energies in
Fig. 5. Results of the atomistic simulation using the CEM
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potential (11, 13) are also shown in Figs. 6 and 7. The
simulated result for surface segregation is again much
closer to the nonsegregation line as compared to the model
with size effect. The CEM heat of mixing for Rh-Pt is
also slightly negative, —2.2 kJ/mol or —23 meV/atom for
the bulk alloy (11, 13); thus, it is understandable that the
stmulated result shows less segregation.

We should point out that the CEM simulated results in
Figs. 6 and 7 are much less reliable statistically, as com-
pared to the MD/MC-CEM results in Fig. 4. Therefore,
in the particular case of Fig. 6 only, another reason for
the higher surface percentage for Rh in Rh—-Pt could be
a result of insufficient simulation time. As such, the quan-
titative agreement between the simulation and the model
in Fig. 7 is likely fortuitous. Generally, the discrepancy
between models and simulations is slightly larger for
edge-corner segregation than for overall surface segrega-
tion, as shown in Table 4.
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FIG. 6. Surface fractions of Rh in 201-atom Rh~Pt clusters at 600 K.
The curves are from the models, while the solid circle is from atomistic
simulations using the CEM potentials (11, 13).
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FIG. 7. Edge~corner fractions of Rh in 201-atom Rh—Pt clusters at
1400, 1000, and 600 K. The curves shown are from the mode] with size
effect, while the solid triangle is from atomistic simulations using the
CEM potentials (11, 13). The curves from the model without size effect
(not shown) are nearly identical to the ones shown.

SUMMARY AND CONCLUSIONS

We applied a five-state statistical-mechanical model to
study surface segregation in 201-atom bimetallic clusters
of truncated cubo-octahedral shape. The effects of size
mismatch between atoms of different type were included
via a new empirical formula, based upon dimensional scal-
ing arguments, Atoms of the same type and having the
same number of nearest neighbors were assumed to have
the same site energy, namely, the weighted average of
the interaction energy per atom. Proper combination of
these site energies then defined the “‘effective’ energy
levels of such a binary system. The site energies were
extracted from the atomistic calculations of pure metal
clusters of Al, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au using
the MD/MC-CEM theory and the CEM theory.

From the comparison of 201-, 586-, and 1289-atom clus-
ters, we concluded that the lowest-coordination corner
and edge site energies varied negligibly with cluster size.
This implied that the statistical-mechanical model can be
applied to clusters of any size using the site energies
calculated from the small 201-atom clusters. Upon mini-
mization of the free energy, the model reproduced qualita-
tively the surface segregation results generated by atomis-
tic simulations at 600 K that we reported earlier, using
both CEM and MD/MC-CEM theories. The inclusion of
the size effect was shown to be important in a number
of cases with the size corrected model providing better
accuracy in 75% of the cases for surface segregation,
but worse accuracy in 66% of the cases for edge—corner
segregation, as compared to the model without size cor-
rection.

The model suffers from two main limitations. First, it
does not incorporate a nonzero heat of mixing. Second,



586

it cannot treat systems with very large (=12.5%) lattice-
size mismaich. Although the latter can be overcome only
by performing atomistic simulations, the former may be
overcome by improving the model in the future. Such an
effort will allow more realistic treatment of many bi- and
multimetallic clusters at negligible computational ex-
pense.
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